Go Back   Science Forums Biology Forum Molecular Biology Forum Physics Chemistry Forum > General Forum > Science News and Views
Register Search Today's Posts Mark Forums Read

Science News and Views The latest news and publications from Nature, Science, Cell and other journals. Post science topics and your thoughts here. Anything science related goes here.


How Arctic microbes respond to a warming world

How Arctic microbes respond to a warming world - Science News and Views

How Arctic microbes respond to a warming world - The latest news and publications from Nature, Science, Cell and other journals. Post science topics and your thoughts here. Anything science related goes here.


Reply
 
LinkBack Thread Tools Display Modes
  #1  
Old 11-17-2011, 01:59 PM
obama's Avatar
Graduate Student
Points: 2,830, Level: 34 Points: 2,830, Level: 34 Points: 2,830, Level: 34
Activity: 0% Activity: 0% Activity: 0%
 
Join Date: Jan 2009
Location: Hannover Germany
Posts: 145
Thanks: 2
Thanked 25 Times in 21 Posts
Default How Arctic microbes respond to a warming world



From the North Pole to the Arctic Ocean, the frozen soils within this region keep an estimated 1,672 billion metric tons of carbon out of the Earth's atmosphere. This sequestered carbon is more than 250 times the amount of greenhouse gas emissions attributed to the United States in the year 2009. As global temperatures slowly rise, however, so too do concerns regarding the potential impacts upon the carbon cycle when the permafrost thaws and releases the carbon that has been trapped for eons. Like so many of the planet's critical environmental processes, the smallest players—microbes—have the most significant influence over the eventual outcome.

To answer this question, researchers from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), the Earth Sciences Division (ESD) within Berkeley Lab, and the U.S. Geological Survey collaborated to understand how the microbes found in permafrost respond to their warming environment. Among the findings, published online November 6 in the journal Nature, is the draft genome of a novel microbe that produces methane, a far more potent greenhouse gas than carbon dioxide. This microbe, not yet named, lives in the permafrost, and was assembled out of the collection of genomes—the metagenome—isolated from the frigid soil. The assembly challenge is similar to building one complete jigsaw puzzle from a large collection of pieces from many different puzzles.

"The permafrost is poised to become a major source of greenhouse gases as the temperature in the Arctic is expected to increase dramatically compared to the expected temperature increase in many other regions of the world," said ESD's Janet Jansson, corresponding author and initiator of the study (first supported by a grant to her from DOE Laboratory Directed Research and Development funds). "By applying metagenomics to study microbial community composition and function, we can help to answer questions about how the currently uncultivated and unstudied microbial species residing in permafrost cycle organic carbon and release greenhouse gases during thaw," Jansson said. "This will provide valuable information that could lead to improved carbon cycle models and eventual mitigation strategies."

According to the U.S. Environmental Protection Agency, in 2009 fossil fuel combustion accounted for 5.2 billion metric tons of the nation's carbon dioxide emissions, a tiny fraction (about 3/10 of 1 percent) of the carbon dioxide trapped in the Arctic permafrost. Understanding the microbial processes in the frozen soils and the impacts of microbial activity on carbon dioxide processes, has been a project of study co-author and USGS researcher Mark Waldrop, whose 2010 Community Sequencing Program project, another with the DOE JGI (in collaboration with Jansson), focuses on comparing the short-term microbial response of the thawing permafrost to the longer-term processes.

Waldrop cored meter-deep permafrost samples from a peaty black spruce forest along Hess Creek, Alaska. Each sample was then divided to distinguish between the seasonally thawed "active" layer, which comprised the top third of the core, and the permanently frozen "permafrost" horizon underneath. The samples were incubated during thaw at 5°C and then sent to the Jansson lab for DNA extraction and analyses At the DOE JGI, the team led by Director Eddy Rubin and his postdoctoral fellow Rachel Mackelprang, (now at California State University-Northridge) sequenced microbial DNA from the samples. "These microbial communities are extremely diverse," said Mackelprang. "A single gram of soil may contain thousands of different bacterial species and billions of cells. Additionally, most of these microbes cannot be grown in the laboratory, making this an extremely difficult area to study." The data were then analyzed in collaboration with Jansson and her team at ESD, including Kristen DeAngelis, Maude David, and Krystle Chavarria.

At DOE JGI, Mackelprang and her colleagues generated nearly 40 billion bases of raw DNA sequence, necessary due to the high microbial diversity of the soil. They identified several microbes that produced methane as a byproduct, and were able to assemble a draft genome of a novel methanogen. "This is the first example of a successful assembly of a draft genome from a highly complex soil metagenome," the authors wrote. "The abundance of this novel methanogen suggests that it may be an important player in methane production under frozen conditions." Additionally, the genomic data revealed that the microbe had genes for nitrogen fixation, making this study also the first to describe a potentially nitrogen-fixing methanogen in permafrost soil.

The researchers identified many genes involved in carbon and nitrogen cycling in the metagenomic data, and found that their levels of abundance shifted in response to their thawing habitat. "These detailed analyses reveal for the first time the rapid and dynamic response of permafrost microbial communities to thaw," they concluded. "The thaw-induced shifts that we detected directly support conceptual models of carbon and nitrogen cycling in arctic soils, in which microbes play a central role in greenhouse gas emissions and destabilization of stored permafrost carbon."

Source : DOE/Joint Genome Institute
__________________
With Regards
Uday Kumar
[Only registered users see links. ]
Reply With Quote
  #2  
Old 02-21-2012, 10:32 PM
Banned
Points: 157, Level: 3 Points: 157, Level: 3 Points: 157, Level: 3
Activity: 0% Activity: 0% Activity: 0%
 
Join Date: Feb 2012
Posts: 46
Thanks: 0
Thanked 1 Time in 1 Post
Default Re: How Arctic microbes respond to a warming world

very good...thanks
Reply With Quote
  #3  
Old 03-31-2012, 10:18 AM
Pipette Filler
Points: 102, Level: 2 Points: 102, Level: 2 Points: 102, Level: 2
Activity: 0% Activity: 0% Activity: 0%
 
Join Date: Mar 2012
Posts: 20
Thanks: 0
Thanked 0 Times in 0 Posts
Default Re: How Arctic microbes respond to a warming world

To answer this question, researchers from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), the Earth Sciences Division (ESD) within Berkeley Lab, and the U.S. Geological Survey collaborated to understand how the microbes found in permafrost respond to their warming environment. Among the findings, published online November 6 in the journal Nature, is the draft genome of a novel microbe that produces methane, a far more potent greenhouse gas than carbon dioxide. This microbe, not yet named, lives in the permafrost, and was assembled out of the collection of genomes—the metagenome—isolated from the frigid soil. The assembly challenge is similar to building one complete jigsaw puzzle from a large collection of pieces from many different puzzles.
Reply With Quote
Reply

Tags
arctic , microbes , respond , warming , world


Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On

Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Physicists Losing Their Grip?? Consc Physics Forum 218 01-06-2005 01:20 PM


All times are GMT. The time now is 06:32 PM.


Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.
Copyright 2005 - 2012 Molecular Station | All Rights Reserved
Page generated in 0.14388 seconds with 16 queries