Go Back   Science Forums Biology Forum Molecular Biology Forum Physics Chemistry Forum > General Forum > Science News and Views
Register Search Today's Posts Mark Forums Read

Science News and Views The latest news and publications from Nature, Science, Cell and other journals. Post science topics and your thoughts here. Anything science related goes here.


Mechanism of chloride interaction with neurotransmitter:sodium symporters

Mechanism of chloride interaction with neurotransmitter:sodium symporters - Science News and Views

Mechanism of chloride interaction with neurotransmitter:sodium symporters - The latest news and publications from Nature, Science, Cell and other journals. Post science topics and your thoughts here. Anything science related goes here.


Reply
 
LinkBack Thread Tools Display Modes
  #1  
Old 08-30-2007, 04:50 PM
admin's Avatar
Administrator
 
Join Date: Nov 2005
Posts: 1,418
Thanks: 883
Thanked 68 Times in 58 Posts
Post Mechanism of chloride interaction with neurotransmitter:sodium symporters



Neurotransmitter:sodium symporters (NSS) have a critical role in regulating neurotransmission and are targets for psychostimulants, anti-depressants and other drugs. Whereas the non-homologous glutamate transporters mediate chloride conductance, in the eukaryotic NSS chloride is transported together with the neurotransmitter. In contrast, transport by the bacterial NSS family members LeuT, Tyt1 and TnaT is chloride independent. The crystal structure of LeuT reveals an occluded binding pocket containing leucine and two sodium ions, and is highly relevant for the neurotransmitter transporters. However, the precise role of chloride in neurotransmitter transport and the location of its binding site remain elusive. Here we show that introduction of a negatively charged amino acid at or near one of the two putative sodium-binding sites of the GABA (?-aminobutyric acid) transporter GAT-1 from rat brain (also called SLC6A1) renders both net flux and exchange of GABA largely chloride independent. In contrast to wild-type GAT-1, a marked stimulation of the rate of net flux, but not of exchange, was observed when the internal pH was lowered. Equivalent mutations introduced in the mouse GABA transporter GAT4 (SLC6A11) and the human dopamine transporter DAT (SLC6A3) also result in chloride-independent transport, whereas the reciprocal mutations in LeuT and Tyt1 render substrate binding and/or uptake by these bacterial NSS chloride dependent. Our data indicate that the negative charge, provided either by chloride or by the transporter itself, is required during binding and translocation of the neurotransmitter, probably to counterbalance the charge of the co-transported sodium ions.

More...
Reply With Quote
Reply


Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On

Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Human Cytome Project - Update 24 Jan. 2005 Peter Van Osta Cell Biology and Cell Culture 1 08-01-2010 02:18 PM
in vivo validation of abolished protein-protein interaction Oslomane Protein Science 0 03-25-2008 10:26 PM
A Human Cytome Project - an idea - Update 14 March 2005 Peter Van Osta Cell Biology and Cell Culture 0 03-14-2005 02:27 PM
Human Cytome Project - Update 6 Jan. 2005 Peter Van Osta Cell Biology and Cell Culture 0 01-06-2005 11:18 AM
Making a small quantity of ferric chloride (III) Patrice Nadeau Chemistry Forum 14 01-30-2004 02:59 AM


All times are GMT. The time now is 03:54 AM.


Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.
Copyright 2005 - 2012 Molecular Station | All Rights Reserved
Page generated in 0.15210 seconds with 16 queries