Go Back   Science Forums Biology Forum Molecular Biology Forum Physics Chemistry Forum > General Science Forums > Physics Forum
Register Search Today's Posts Mark Forums Read

Physics Forum Physics Forum. Discuss and ask physics questions, kinematics and other physics problems.


Scientists Race to Detect First Gravitational Waves...

Scientists Race to Detect First Gravitational Waves... - Physics Forum

Scientists Race to Detect First Gravitational Waves... - Physics Forum. Discuss and ask physics questions, kinematics and other physics problems.


Reply
 
LinkBack Thread Tools Display Modes
  #1  
Old 10-22-2007, 03:28 PM
Bubba Do Wah Ditty
Guest
 
Posts: n/a
Default Scientists Race to Detect First Gravitational Waves...



[Only registered users see links. ]

Scientists Race to Detect First Gravitational Waves
By Mark Anderson 10.22.07 | 12:00 AM

Scientists at the LIGO Livingston Observatory in Louisiana, shown here in an
aerial shot, are searching for evidence of gravitational waves.
Photo: LIGO Laboratory
The race is on to detect ripples from the most massive events in the
universe: spinning, orbiting, exploding or colliding ultra-dense objects
like black holes and neutron stars.

In 1918, Albert Einstein predicted these cosmic events would radiate a
propagating distortion of space and time: gravitational waves. After
spending hundreds of millions of dollars to detect them, scientists have
come up empty.

But don't write off the hunt just yet. Physicists worldwide have been
fine-tuning enormous, multimillion-dollar machines to filter out background
noise so they can observe the unique signatures of a gravitation wave.
Before the decade is out, they believe they'll record the percussive crash
of colliding black holes or the vibrant hum of a pulsar -- a discovery that
would be the proverbial shot heard around the scientific world.

"I tell students they're lucky," said Rana Adhikari, a principal
investigator at the Caltech-MIT Laser Interferometer Gravitational-Wave
Observatory. "They're getting in at the right time -- it's right before we
see something."

The first concrete proof that gravitational waves exist will not only verify
a key tenet of relativity theory, but provide unprecedented insight into the
mysterious lives of black holes, neutron stars, quark stars (if these
controversial objects exist), cosmic strings (also controversial) and
probably other as-yet unimagined treasures.

Scientists have spent more than a generation tinkering patiently, coming up
empty again and again, but in the process creating increasingly powerful
tools.

The DIY set has even gotten into the act. A scientist at the University of
Massachusetts at Dartmouth has strung together eight Sony PlayStation 3s to
form a supercomputer powering a search for gravitational waves.

Other groups on the hunt have let loose much bigger machines. Stefano Foffa
of the University of Geneva is a member of a leading
gravitational-wave-detection team, which includes 33 other scientists from
Switzerland and Italy. They recently submitted a report to Classical and
Quantum Gravity that details their so-far fruitless attempts at observing
tiny gravitational tugs and distortions on Explorer, a supercooled,
3-meter-long aluminum bar at the CERN particle physics lab in Switzerland.

Explorer is particularly well-tuned to sense spinning neutron stars, also
known as pulsars, Foffa said. He and his colleagues estimate that some
200,000 of these spinning, super-dense objects -- so dense that a just sugar
cube-sized amount weighs as much as the entire human race -- are scattered
throughout the Milky Way.

But the thermal noise of even supercooled atoms is greater than the
momentary twang the bar's atoms would experience when being plucked by a
passing gravitational wave. So the Explorer group must use sensitive
superconducting circuits to coax out a signal. It's an art that's still
being perfected.

LIGO, the Caltech-MIT observatory, is an even bigger and more ambitious
project than Explorer. To someone flying overhead, LIGO looks like an
unfinished oil pipeline, with two mile-and-a-half long tubes jutting in
perpendicular directions from a central building. The pipes (one in
Livingston, Louisiana, and the other in >Richmond, Washington), contain
sensitive optics in which laser light bounces back and forth 100 times, then
combines, allowing physicists to compare the two beams to monitor the
space-time through which the light traveled.

The interference patterns from LIGO's two perpendicular laser beams
sometimes momentarily jostle. If the same jostling happens at both LIGO's
Louisiana and Washington detectors, and no earthquakes can explain the
anomaly, then the source may well be a gravitational wave.

It's the million-dollar moment that hasn't happened.

Then again, LIGO has produced mountains of data since it first began
operating in 2002. One popular distributed computing project, Einstein@Home,
sifts through these databases to check for signals that might have been
missed.

Merging black holes, otherwise invisible to science, are primary targets for
detectors like Explorer and LIGO, Adhikari said.

Before last year, however, the echoes of a black-hole collision were too
shrouded in complicated mathematics for scientists to even begin hunting
for. But in 2006 three separate teams cracked the numerical code to
calculate the gravitational crashing sound that merging black holes would
make.

And now LIGO scientists have begun searching their data for this
gravitational wave signature. If scientists continue to detect nothing,
however, Einstein's theories may well need modifying.

"If we don't see anything in four years," Foffa said, "then it will be the
time to start questioning."

--
Bubba Do Wah Ditty



Reply With Quote
Reply

Tags
detect , gravitational , race , scientists , waves


Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On

Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
FFiMP: The Equivalence Principle Jan Gooral Physics Forum 0 05-22-2008 02:53 PM
FFiMP: Where is the gravitational energy? Jan Gooral Physics Forum 0 05-22-2008 02:52 PM
The Origin of The Universe / S D Rodrian SDR Physics Forum 10 02-24-2005 01:24 PM
Biophysics & Schumann Resonance Consc Physics Forum 16 12-27-2004 10:45 AM
Einstein's Gravitational Waves May Set Speed Limit For Pulsar Spin Do Wah Ditty Physics Forum 0 07-08-2003 11:55 AM


All times are GMT. The time now is 06:25 PM.


Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.
Copyright 2005 - 2012 Molecular Station | All Rights Reserved
Page generated in 0.13781 seconds with 16 queries