Go Back   Science Forums Biology Forum Molecular Biology Forum Physics Chemistry Forum > General Science Forums > Physics Forum
Register Search Today's Posts Mark Forums Read

Physics Forum Physics Forum. Discuss and ask physics questions, kinematics and other physics problems.


Store Memory in Ferroelectric Nanodisks and Nanorods - using a single nanoparticle to store one data bit.

Store Memory in Ferroelectric Nanodisks and Nanorods - using a single nanoparticle to store one data bit. - Physics Forum

Store Memory in Ferroelectric Nanodisks and Nanorods - using a single nanoparticle to store one data bit. - Physics Forum. Discuss and ask physics questions, kinematics and other physics problems.


Reply
 
LinkBack Thread Tools Display Modes
  #1  
Old 12-12-2004, 02:43 PM
Ken Kubos
Guest
 
Posts: n/a
Default Store Memory in Ferroelectric Nanodisks and Nanorods - using a single nanoparticle to store one data bit.



[Only registered users see links. ]

Physicists Discover Potential Way to Store Memory in Ferroelectric Nanodisks
and Nanorods
December 09, 2004

University of Arkansas physicists have discovered a new phase in tiny
nanodisks and nanorods that potentially may enable researchers to increase
memory storage by more than one thousand fold. This finding also opens a new
area in physics to fundamental investigation.

Ivan Naumov, Laurent Bellaiche and Huaxiang Fu report their findings
in the Dec. 9 issue of the journal Nature.

"This ordered phase with technological relevance is previously unknown,"
said Naumov, a research scientist who works with Fu. "The new phase is
possible because the nano-size of the disks wouldn't allow disorder due to
properties no one has characterized before."

"It's a new phenomenon. You can think of using it to make new, hugely
increased memories" for storing information, Bellaiche said.

The researchers studied ferroelectric materials at the nanometer scale.
Ferroelectric materials possess spontaneous dipoles, or charge separations,
that allow them to create the images seen in medical ultrasound and naval
sonar, and also are used to convert signals to sound in cell phones and
other audio devices. How these dipoles behave when the material is on the
nanoscale is not well known.

"Our goal is to explore the possibility of using a single nanoparticle to
store one data bit," Naumov said. However, the net polarization -- which is
spontaneously formed in bulk materials and is so far the key to storing
information -- does not normally exist in nanoparticles. Naumov, Bellaiche,
and Fu decided to search instead for a new phase in the world of
nano-ferroelectrics.

They found to their surprise that the dipoles in nanomaterials form a new
state when the temperature is lowered. The researchers used computer
simulations to determine what happens to the nanorods and nanodiscs when
they reach this state.

They found that instead of polarization, the new phase creates what the
researchers call a toroid moment, which rotates in a circular fashion like a
vortex or a tornado. These moments can rotate in one direction or another,
forming a bi-stable state that is capable of storing information, like
polarization.

However, the toroid moment provides a different kind of order. Unlike
polarization, the toroid moment can exist in tiny nanoparticles, which thus
allows storage of one bit of information in a single particle, which has the
advantage of increasing memory density. Also, unlike the polarization state,
in which particles influence one another if moved in close proximity, the
vortices created by this new phase do not interact strongly with one
another. This means they can be packed together in a small space.

"This eliminates the 'cross-talk' problem. You can compact the materials
very densely," Naumov said.

"We know that in principle this new finding can increase the memory capacity
using nanoparticles, we don't yet know how long it will take to make a
technology reality," Fu said. "But it's a new direction in which to point
people."

Source: University of Arkansas

--
Ken

"Buddhism elucidates why we are sentient."



Reply With Quote
Reply

Tags
bit , data , ferroelectric , memory , nanodisks , nanoparticle , nanorods , single , store


Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On

Forum Jump


All times are GMT. The time now is 12:55 PM.


Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.
Copyright 2005 - 2012 Molecular Station | All Rights Reserved
Page generated in 0.12310 seconds with 15 queries